1,495 research outputs found

    Eddy current speed sensor with magnetic shielding

    Get PDF
    This paper presents the design and analysis of a new eddy current speed sensor with ferromagnetic shielding. Aluminum and solid iron are considered for the moving part. One excitation coil and two antiserially connected pick up coils are shielded by a thin steel lamination. 3D time stepping finite element analysis is used to analyze the sensor performance with different magnetic materials and compare with experimental results. The compactness, simplicity and excellent linearity with different magnetic materials for the moving part show uniqueness of the proposed speed sensor. The shielding increases sensitivity and reduces the influence of close ferromagnetic objects and interferences on the sensor performance

    Nesting behaviour influences species-specific gas exchange across avian eggshells

    Get PDF
    Carefully controlled gas exchange across the eggshell is essential for the development of the avian embryo. Water vapour conductance (GH2O) across the shell, typically measured as mass loss during incubation, has been demonstrated to optimally ensure the healthy development of the embryo while avoiding desiccation. Accordingly, eggs exposed to sub-optimal gas exchange have reduced hatching success. We tested the association between eggshell GH2O and putative life-history correlates of adult birds, ecological nest parameters and physical characteristics of the egg itself to investigate how variation in GH2O has evolved to maintain optimal water loss across a diverse set of nest environments. We measured gas exchange through eggshell fragments in 151 British breeding bird species and fitted phylogenetically controlled, general linear models to test the relationship between GH2O and potential predictor parameters of each species. Of our 17 life-history traits, only two were retained in the final model: wet-incubating parent and nest type. Eggs of species where the parent habitually returned to the nest with wet plumage had significantly higher GH2O than those of parents that returned to the nest with dry plumage. Eggs of species nesting in ground burrows, cliffs and arboreal cups had significantly higher GH2O than those of species nesting on the ground in open nests or cups, in tree cavities and in shallow arboreal nests. Phylogenetic signal (measured as Pagel's Ī») was intermediate in magnitude, suggesting that differences observed in the GH2O are dependent upon a combination of shared ancestry and species-specific life history and ecological traits. Although these data are correlational by nature, they are consistent with the hypothesis that parents constrained to return to the nest with wet plumage will increase the humidity of the nest environment, and the eggs of these species have evolved a higher GH2O to overcome this constraint and still achieve optimal water loss during incubation. We also suggest that eggs laid in cup nests and burrows may require a higher GH2O to overcome the increased humidity as a result from the confined nest microclimate lacking air movements through the nest. Taken together, these comparative data imply that species-specific levels of gas exchange across avian eggshells are variable and evolve in response to ecological and physical variation resulting from parental and nesting behaviours

    Formation of CO2 on a carbonaceous surface: a quantum chemical study

    Get PDF
    The formation of CO2 in the gas phase and on a polyaromatic hydrocarbon surface (coronene) via three possible pathways is investigated with density functional theory. Calculations show that the coronene surface catalyses the formation of CO2 on model grain surfaces. The addition of O-3 to CO is activated by 2530 K in the gas phase. This barrier is lowered by 253 K for the Eley-Rideal mechanism and 952 K for the hot-atom mechanism on the surface of coronene. Alternative pathways for the formation of CO2 are the addition of O-3 to the HCO radical, followed by dissociation of the HCO2 intermediate. The O + HCO addition is barrierless in the gas phase and on the surface and is more than sufficiently exothermic to subsequently cleave the H-C bond. The third mechanism, OH + CO addition followed by H removal from the energized HOCO intermediate, has a gas-phase exit barrier that is 1160 K lower than the entrance barrier. On the coronene surface, however, both barriers are almost equal. Because the HOCO intermediate can also be stabilized by energy dissipation to the surface, it is anticipated that for the surface reaction the adsorbed HOCO could be a long-lived intermediate. In this case, the stabilized HOCO intermediate could react, in a barrierless manner, with a hydrogen atom to form H-2 + CO2, HCO2H, or H2O + CO

    Host responses to interspecific brood parasitism: a by-product of adaptations to conspecific parasitism?

    Get PDF
    Background: Why have birds evolved the ability to reject eggs? Typically, foreign egg discrimination is interpreted as evidence that interspecific brood parasitism (IP) has selected for the hostā€™s ability to recognize and eliminate foreign eggs. Fewer studies explore the alternative hypothesis that rejection of interspecific eggs is a by-product of host defenses, evolved against conspecific parasitism (CP). We performed a large scale study with replication across taxa (two congeneric Turdus thrushes), space (populations), time (breeding seasons), and treatments (three types of experimental eggs), using a consistent design of egg rejection experiments (nā€‰=ā€‰1057 nests; including controls), in areas with potential IP either present (Europe; native populations) or absent (New Zealand; introduced populations). These comparisons benefited from the known length of allopatry (one and a half centuries), with no gene flow between native and introduced populations, which is rarely available in host-parasite systems. Results: Hosts rejected CP at unusually high rates for passerines (up to 60%). CP rejection rates were higher in populations with higher conspecific breeding densities and no risks of IP, supporting the CP hypothesis. IP rejection rates did not covary geographically with IP risk, contradicting the IP hypothesis. High egg rejection rates were maintained in the relatively long-term isolation from IP despite non-trivial rejection costs and errors. Conclusions: These egg rejection patterns, combined with recent findings that these thrushes are currently unsuitable hosts of the obligate parasitic common cuckoo (Cuculus canorus), are in agreement with the hypothesis that the rejection of IP is a by-product of fine-tuned egg discrimination evolved due to CP. Our study highlights the importance of considering both IP and CP simultaneously as potential drivers in the evolution of egg discrimination, and illustrates how populations introduced to novel ecological contexts can provide critical insights into brood parasite-host coevolution.Peter Samas, Mark E Hauber, Phillip Cassey and Tomas Gri

    The evolutionary causes of egg rejection in European thrushes (Turdus spp.): a reply to M. Soler

    Get PDF
    Peter Samas, Mark E Hauber, Phillip Cassey, and Tomas Gri

    Quantum well behavior of single stacking fault 3C inclusions in 4H-SiC p-i-n diodes studied by ballistic electron emission microscopy

    Get PDF
    We show that "single" stacking fault 3C inclusions formed in 4H-SiC p-i-n diodes behave as electron quantum wells (QWs) with the QW energy depth of ???0.25 eV below 4H-SiC conduction band minimum, by measuring the Schottky barriers on and away from inclusions with ballistic electron emission microscopy (BEEM). The Schottky barrier on the 4H area ([11-20] oriented) is measured to be essentially the same as (0001) plane studied previously, indicating that the interface pinning effects on both crystal faces are almost identical. Additionally, BEEM current amplitude is observed to be very sensitive to subsurface damage induced by polishing.open91

    Critical parameters and performance tests for the evaluation of digital data acquisition hardware

    Get PDF
    Recent developments of digital data acquisition systems allow real-time pre-processing of detector signals at a high count rate. These so-called pulse processing digitizers are powerful and versatile instruments offering techniques which are important for nuclear security, critical infrastructure protection, nuclear physics and radiation metrology. Certain aspects of digital data acquisition affect the performance of the total system in a critical way and therefore require special attention. This report presents a short introduction to digital data acquisition, followed by a discussion of the critical parameters which affect the performance in the lab and in the field. For some of the parameters, tests are proposed to assess the performance of digital data acquisition systems. Good practices are offered to guide the selection and evaluation of digital data acquisition systems. More general performance criteria which are not specifically related to digital data acquisition systems are discussed separately.JRC.D.4-Standards for Nuclear Safety, Security and Safeguard

    The Grizzly, January 27, 1989

    Get PDF
    Constructium Ursini ā€¢ Ad Hoc Hoists Honor ā€¢ New GPA: 2.25 or Dive! ā€¢ Letter: Green Shirt Makes Reed Red ā€¢ Fair Not Just for Freshmen ā€¢ Security Shacks in Reimert ā€¢ Beverly Oehlert Named to Pottstown Board of Directors ā€¢ Final Red and Gold Day ā€¢ Hoopsters Stunning in Second ā€¢ Lady Bears Go For Title ā€¢ U.C. Hockey Bids Boyd Bon Voyage ā€¢ A \u27bears Recover from Fla. ā€¢ Dryfoos, Knauer Newest Dirs. ā€¢ Bailey Bandies With Bush ā€¢ Grim Gripes: Wismer Hard to Swallow ā€¢ Quintet Jazzes Up First Forum ā€¢ Greenstein to Performhttps://digitalcommons.ursinus.edu/grizzlynews/1226/thumbnail.jp
    • ā€¦
    corecore